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SIMBAD
Deliverable 4.2: Report on Structure Preserving

Embedding of Dissimilarity Data

Peter Schüffler, Sharon Wulff,
Joachim M. Buhmann, Cheng Soon Ong, Volker Roth

Introduction
For several major applications in data mining, data is often not available as feature
vectors in a vector space. For instance, genomics typically produce data represented as
strings from some alphabet, psychology yields sets of similarity judgments, yet other
fields like social sciences measure so called preference data. The missing vector space
representation precludes the use of well established machine learning techniques such
as Principal Component Analysis [1] or Support Vector Machines [2].

A common approach to handling Non-vectorial datasets is to replace the initial data
by a collection of real numbers representing some “comparison” among the elements
of the dataset. This procedure yields a matrix gathering the pairwise relations between
the original objects, which may be the starting point of further data analysis.

The clustering approaches discussed in this report aim at identifying subsets or
clusters of objects represented as “blocks” in a permuted dissimilarity matrix. The
underlying idea is that objects grouped together in such a cluster can be reasonably
well described as a homogeneous sub-population. Our focus on dissimilarity matrices
implies that we do not have access to a vectorial representation of the objects, and in
general, no such representation will exist, since we do not assume that the dissimilarity
matrix fulfills the axioms of a valid metric.

In this report we summarize our studies on embedding strategies in the context of
clustering. In the first part of this document we will mainly summarize our results
for the pairwise k-means clustering cost function as outlined in [3]: we begin with a
short overview of proximity-based data grouping, and then we focus on reformulating
such problems with vectorial data representations. For the class of pairwise cluster-
ing methods that are related to minimizing a shift-invariant cost function, the constant
shift embedding procedure is presented. A surprising property of this embedding is the
complete preservation of group structure. The original non-metric pairwise clustering
problem can be restated as a grouping problem over points in a vector space, yielding
identical assignments of objects to clusters. Using the constant-shift embedding princi-
ple, we then demonstrate the equivalence between the pairwise clustering cost function
and the classical k-means grouping criterion in the embedding space. The conclusion is
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that the the k-means cost function (or its dissimilarity-based counterpart) is essentially
“blind” against metric violations.

In the second part we will analyze a more general setting where the hard-clustering
scenario with fixed number of clusters is replaced by a probabilistic approach which is
capable of selecting the number of clusters in a data-adaptive way. We show that this
probabilistic model is shift invariant only in an approximate sense, and in particular we
show that exact shift invariance and data-adaptive selection of the number of clusters
define two conflicting goals.

We conclude this report with a (sober) discussion about the role of structure pre-
serving embeddings for the overall goal in the SIMBAD project, namely for building a
novel theory for similarity-based pattern recognition.

1 Constant Shift Embedding for Pairwise Clustering

1.1 Proximity-based clustering
Unsupervised grouping or clustering aims at extracting hidden structure from data [4].
The term data refers to both a set of objects and a set of corresponding object represen-
tations resulting from some physical measurement process. Different types of object
representations are possible, the two most common of which are vectorial data and
pairwise proximity data. In the first case, a set of n objects is represented as n points in
a d-dimensional vector space, whereas in the second case we are given a n×n pairwise
proximity matrix.

The problem of grouping vectorial data has been widely studied in the literature,
and many clustering algorithms have been proposed [4, 5]. One of the most popular
method is k-means clustering. It derives a set of k prototype vectors which quantize
the data set with minimal quantization error.

Partitioning proximity data is considered a much harder problem, since the inher-
ent structure is hidden in n2 pairwise relations. This datatype, however, is abundant
in many applications, such as molecular biology, psychology, linguistics etc. In gen-
eral, the proximities can violate the requirements of a distance measure, i.e. they may
be non-symmetric and negative, and the triangle inequality does not necessarily hold.
Thus, a loss-free embedding into a vector space is not possible, so that grouping prob-
lems of this kind can not directly be transformed into vectorial problems by means of
classical embedding strategies.

Among several methods for clustering proximity-based data, in this first part of
the document we will focus on those techniques that explicitly minimize a certain cost
function. This subset of clustering methods includes e.g. graph-theoretic approaches
like several variations of Cut criteria [6], and several methods derived from an axiom-
atization of pairwise cost functions in [7]. From a theoretical viewpoint, cost-based
clustering methods are interesting insofar, as many properties of the grouping solutions
can be derived by analyzing invariance properties of the cost function.

Among the class of cost-based criteria, the main focus of this work concerns those
cost functions which are invariant under constant additive shifts of the pairwise dis-
similarities. For this subset of clustering criteria we show that there always exists a set
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of vectorial data representations such that the grouping problem can be equivalently
restated in terms of Euclidean distances between these vectors. A special cost function
of this kind is the pairwise clustering cost function. It is of particular interest, since it
combines the properties of additivity, scale- and shift invariance, and statistical robust-
ness, see [7]. In [8] this grouping problem is stated as a combinatorial optimization
problem, which is optimized in a deterministic annealing framework after applying a
mean-field approximation.

According to the theorem 2, we can always find a vectorial data representation such
that the optimal partitioning w.r.t. the pairwise cost function is identical to k-means
partitioning in the embedding space. This property demonstrates that the embedding
method is optimal w.r.t. to distortions of the data partition. This distortion preserving
embedding has to be contrasted with alternative, in our view not consistent, approaches
that are optimal w.r.t. some a priori chosen MDS distortion measure.

Formulating pairwise clustering as a k-means problem yields several advantages,
both of theoretical and technical nature: (i) the availability of prototype vectors defines
a generic rule for using the learned partitioning in a predictive sense, (ii) we can apply
standard noise- and dimensionality-reduction methods in order to separate the “signal”
part of the data from underlying “noise”, (iii) fast and efficient local search heuristics
for optimizing the clustering cost functional often work much better in low dimensional
embedding spaces.

1.2 The Pairwise Clustering Cost function
The modeling idea behind the Pairwise Clustering cost function is to minimize the
sum of pairwise intra-cluster distances, emphasizing compact clusters. Optimizing a
compactness criterion is certainly a very intuitive meta-principle for exploratory data
analysis. It should be noticed, however, that other such meta-principles have been
proposed, such as separation measures, mixed compactness/separation measures or
connectivity measures. In order to formalize Pairwise Clustering, we define for each
object a binary assignment variable that indicates its cluster membership. Let these
variables be summarized in the (n × k) binary stochastic assignment matrix M ∈
{0, 1}n×k :

∑k
ν=1 Miν = 1. Given a (n × n) dissimilarity matrix D, the Pairwise

Clustering cost function reads:

Hpc =
1
2

k∑
ν=1

∑n
i=1

∑n
j=1 MiνMjνDij∑n

l=1 Mlν
. (1)

The optimal assignments M̂ are obtained by minimizing Hpc. The minimization itself
is a NP hard problem [9], and some approximation heuristics have been proposed: in
[8] a mean field annealing framework has been presented. In [7] it has been shown
that the time-honored Ward’s method can be viewed as a hierarchical approximation of
Hpc.
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1.3 A special case: k-means clustering
For the special case of squared Euclidean distances between vectors {xi}ni=1, xi ∈
Rd, it is well known that Hpc is identical to the classical k-means cost function, see
[4]. We now briefly review this relationship. The k-means cost function is defined as

Hkm =
k∑

ν=1

n∑
i=1

Miν‖xi − yν‖2. (2)

It measures the sum of squared intra-cluster distances to the prototype vectors

yν :=
∑n

i=1 Miνxi

nν
, (3)

where nν :=
∑n

l=1 Mlν denotes the number of objects in cluster ν. Hkm can be written
in a pairwise fashion by exploiting a simple algebraic identity for squared Euclidean
distances:

‖xi − yν‖2 =
1
nν

n∑
j=1

Mjν‖xi − xj‖2 −
1

2n2
ν

n∑
j=1

n∑
l=1

MjνMlν‖xj − xl‖2,

n∑
i=1

Miν‖xi − yν‖2 =
1

2nν

n∑
j=1

n∑
l=1

MjνMlν‖xj − xl‖2.

(4)

Substituting the latter identity into (2), we obtain

Hkm =
1
2

k∑
ν=1

∑n
i=1

∑n
j=1 MiνMjν‖xi − xj‖2∑n

l=1 Mlν
= Hpc. (5)

From this viewpoint, k-means clustering can be interpreted as a method for minimiz-
ing the sum of squared pairwise intra-cluster distances Dij = ‖xi − xj‖2. The reader
should notice, however, that in the general case of arbitrary dissimilarities Dij a direct
algebraic re-transformation of Hpc into Hkm is not possible. Despite this fact, we will
show in the remainder of this paper that it is still possible to obtain the optimal as-
signment variables M̂ with respect to Hpc(M) by minimizing a suitably transformed
k-means problem. The key ingredient will be the shift invariance property of the Pair-
wise Clustering cost function: Hpc is invariant (up to a constant) under additive shifts
of the off-diagonal elements of the dissimilarity matrix:

D̃ij = Dij + d0(1− δij) ⇒ H̃ = H + (1/2) · (n− k)d0 = H + const. (6)

Note that the optimal assignments of objects to clusters are not influenced by adding a
constant to the cost function, i.e. M̂(D̃) = M̂(D).

1.4 Constant shift embedding
We have introduced the cost function Hpc as a special instance of pairwise cluster-
ing problems. Due to the shift-invariance property (6), the partitioning of the dataset
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(i.e. the assignments of a set of n objects to k clusters) is not affected by a con-
stant additive shift on the off-diagonal elements of the pairwise dissimilarity matrix
D = (Dij) ∈ Rn×n. In the remainder of this paper, we will consider general dis-
similarity matrices D, restricted only by the constraint that all self-dissimilarities are
zero, i.e. that D has zero diagonal elements. We show that by exploiting the above shift
invariance we can always embed such data into a Euclidean space without influencing
the cluster structure. An off-diagonal shifted dissimilarity matrix reads

D̃ = D + do

(
enet

n − In

)
(7)

where en = (1, 1, . . . 1)t is a n-vector of ones and In the n × n identity matrix. In
other words, (7) describes a constant additive shift D̃ij = Dij + do for all i 6= j.

Before developing the main theory, we have to introduce the notion of a centralized
matrix. Let P be an (n×n) matrix and let Q = In− 1

nenet
n. Q is the projection matrix

on the orthogonal complement of en. Define the centralized P by:

P c = QPQ. (8)

A centralized matrix has row- and column-sum equal to zero, which can easily be seen
by looking at the components of P c

P c
ij = Pij −

1
n

n∑
k=1

Pik −
1
n

n∑
k=1

Pkj +
1
n2

n∑
k,l=1

Pkl. (9)

Let us now consider symmetric dissimilarity matrices. Given such a symmetric and
zero–diagonal matrix D, we decompose it the following way by introducing a new
matrix S:

Dij = Sii + Sjj − 2Sij . (10)

It is clear that this decomposition is not unique unless we specify the diagonal elements
of S. Let SD denote the equivalence class of all S yielding the same D. The following
lemma states that for all members S ∈ SD the centralized version Sc is identical and
uniquely defined by the given matrix D:

Lemma 1. For any symmetric and zero–diagonal matrix D the following holds:

Sc = −1
2
Dc, with Dc = QDQ.

The matrix Sc is a particularly interesting member of SD, since the following the-
orem holds:

Theorem 1. D derives from a squared Euclidean distance, i.e. Dij = ‖xi − xj‖2, if
and only if Sc is positive semi-definite.

Proof. [10] referring to [11].

For general dissimilarities, Sc will be indefinite. By shifting its diagonal elements,
however, we can transform it into a positive semi-definite matrix: the following lemma
states that for any matrix A, a positive semi-definite matrix Ã can be derived by sub-
tracting the smallest eigenvalue from all of its diagonal elements:
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Lemma 2. Let Ã = A− λn(A)In, where λn(·) is the minimal eigenvalue of its argu-
ment. Then Ã is positive semi-definite.

Proof. Due to the diagonal shift, the smallest eigenvalue becomes zero.

We can now summarize the above results: given a matrix D, there exists a unique
matrix Sc by lemma 1. If Sc is not positive semi-definite, lemma 2 states that by
subtracting λn(Sc) from its diagonal elements, we obtain a positive semi-definite S̃.
Returning to (10) with our fixed matrix Sc, such a diagonal shift of Sc corresponds to
an off-diagonal shift of the dissimilarities

D̃ij = S̃ii + S̃jj − 2S̃ij ⇔ D̃ = D − 2λn(Sc)
(
enet

n − In

)
. (11)

In other words, if we were given D̃ instead of our original D, then S̃ would be a
positive semi-definite member of the equivalence class SD̃ of matrices fulfilling the
decomposition D̃ij = S̃ii + S̃jj−2S̃ij . Theorem 1 then tells us that this off-diagonally
shifted matrix D̃ derives from a squared Euclidean distance. Since every positive semi-
definite matrix is a dot product– (or gram–) matrix in some vector space, there exists
a matrix X of vectors such that S̃ = XXt. The matrix D̃ then contains squared
Euclidean distances between these vectors. We can now insert D̃ into our clustering
procedure (which is assumed shift-invariant), and we will obtain the same partition of
the objects as if we had clustered the original matrix D. Contrary to directly using
D, however, the matrix D̃ now contains squared Euclidean distances between a set of
vectors {xi}ni=1. The vectors themselves can be reconstructed by way of kernel PCA,
see [12].

A k-means formulation for Pairwise Clustering It is well-known that for the spe-
cial case of squared Euclidean distances, the Pairwise cost function and the k-means
cost function can be transformed into each other by using a simple algebraic identity,
see above. The invariance property in eq. (6), however, implies that a similar relation-
ship between both cost functions holds in the general setting:

Theorem 2. Given an arbitrary (n×n) dissimilarity matrix D with zero self-dissimilarities,
there exists a transformed matrix D̃ such that
(i) the matrix D̃ can be interpreted as a matrix of squared Euclidian distances between
a set of vectors {xi}ni=1 with dimensionality dim(xi) 6 n− 1,
(ii) the original pairwise clustering problem defined by the cost function Hpc(D) is
equivalent to the k-means problem with cost function Hkm in this vector space, i.e. the
optimal cluster assignment variables M̂iν are identical in both problems: M̂ pc(D) =
M̂ km(D̃).
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2 A Probabilistic Generalization: the Wishart-Dirichlet
Cluster Process

Despite its elegance, the approach described above is particularly tailored to certain
hard-clustering cost functions like the pairwise k-means function. Here we go one
step further and reformulate the matrix partitioning problem in a fully probabilistic
framework. Clustering with such models can be viewed as a low-rank matrix approxi-
mation, and approximate shift invariance can be explained as a natural consequence of
assuming a white noise term capturing the deviations from the low-rank model. In the
hard-clustering limit, the k-means model with its known invariance properties appears
as a special case of this class of models.

This section is structured as follows: we first review the partitioning model for
Gaussian mixtures introduced in [13], which is then extended to a partitioning process
on matrices. Connections to multi-dimensional scaling are shown which help to explain
the clustering process as a low-rank matrix approximation. Finally, shift invariance
properties are analyzed, and the model is tested both on synthetic and real-world data.

2.1 Gauss-Dirichlet cluster process
Let [n] := {1, . . . , n} denote an index set, and Bn the set of partitions of [n]. A
partition B ∈ Bn is an equivalence relation B : [n] × [n] → {0, 1} that may be
represented in matrix form as B(i, j) = 1 if x(i) = x(j) and B(i, j) = 0 otherwise,
with x being a function that maps [n] to some label set L. Alternatively, B may be
represented as a set of disjoint non-empty subsets called “blocks” b. A partition process
is a series of distributions Pn on the set Bn in which Pn is the marginal distribution of
Pn+1. Such a process is called exchangeable if each Pn is invariant under permutations
of object indices, see [14] for details.

A Gauss-Dirichlet cluster process consists of an infinite sequence of points in Rd,
together with a random partition of integers into k blocks. A sequence of length n can
be sampled as follows, cf. [13, 15, 16]: fix the number of mixture modes k, gener-
ate mixing proportions π = (π1, . . . , πk) from an exchangeable Dirichlet distribution
Dir(λ/k, . . . , λ/k), generate a label sequence (x1, . . . , xn) from a multinomial distri-
bution, and forget the labels introducing the random partition B of [n] induced by x.
Integrating out π, one arrives at a Dirichlet-Multinomial-type prior over partitions:

Pn(B|λ, k) =
k!

(k − kB)!
Γ(λ)

∏
b∈B Γ(nb + λ/k)

Γ(n + λ)[Γ(λ/k)]kB
, (12)

where kB ≤ k denotes the number of blocks present in the partition B and nb is
the size of block b. The limit as k → ∞ is well defined and known as the Ewens
process (a.k.a. Chinese Restaurant process), see for instance [17, 18, 19]. Given such a
partition B, d-dimensional observations Y = (Y1, . . . , Yn) are generated from a zero-
mean Gaussian distribution with covariance matrix

ΣB = In ⊗ Σ0 + B ⊗ Σ1, with cov(Yir,Yjs|B) = δijΣ0rs + BijΣ1rs, (13)
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where Σ0 is the usual within-class covariance matrix and Σ1 the between-class matrix,
respectively. Since the partition process is invariant under permutations, we can always
think of B being block-diagonal. For spherical covariance matrices, Σ0 = αId,Σ1 =
βId, the columns of Y contain independent copies distributed according to a normal
distribution with covariance matrix ΣB = αI + βB. Further, the distribution also
factorizes over the blocks b ∈ B. Introducing for each block a (nb × nb)-matrix of
ones Enb

, the joint distribution of data and partitions reads

p(Y, B|α, β, λ, k) =
[∏

b∈B

∏d
j=1 N(Yibj |αInb

+ βEnb
)
]
· P (B|λ, k), (14)

where the symbol ib defines an index-vector for all objects assigned to block b.

2.2 Wishart-Dirichlet cluster process
We now extend the Gauss-Dirichlet cluster process to a sequence of inner-product and
distance matrices. Assume that the random matrix Yn×d follows the zero-mean Gaus-
sian distribution specified in (13), with Σ0 = αId,Σ1 = βId. Then, conditioned on the
partition B, the inner product matrix S = YYt/d follows a (possibly singular) Wishart
distribution in d degrees of freedom, S ∼ Wd(ΣB), [20]. If we directly observe S
(i.e. if we measure similarities expressed as a Mercer kernel matrix), it suffices to con-
sider the conditional probability of partitions, Pn(B|S), which has the same functional
form for ordinary and singular Wishart distributions. Due to the block structure in B,
Pn(B|S) factorizes over the blocks b ∈ B:

Pn(B|S, α, β, λ, k) ∝
[∏

b∈B |Σb|−
d
2 exp

(
−d

2 tr(Σ−1
b Sb)

)]
· Pn(B|λ, k), (15)

where Σb, Sb denote the submatrices corresponding to the b-th block.
Often, however, we do not directly observe S, but only a matrix D of squared dis-

tances with components Dij = Sii + Sjj − 2Sij . Note that S determines D, but not
vice versa, since D is constant on equivalence classes of S resulting from the arbitrari-
ness of the mean vector. A squared distance matrix D is characterized by the property
of being negative definite on contrasts, which means that xtDx = − 1

2xtSx < 0
for any x : xt1 = 0. The distribution of D has been formally studied in [21],
where it was shown that if S ∼ Wd(ΣB), −D follows a generalized Wishart dis-
tribution, −D ∼ Wd(1,∆) defined with respect to the transformation kernel 1, where
∆ij = ΣBii + ΣBjj − 2ΣBij . As before, the transformation kernel has the ef-
fect that the distribution of D is constant on equivalence classes. Since we are in-
terested in studying the partition B given an observed matrix D, it is convenient to
forego the equivalence classes by explicitly choosing a representation S which fulfills
Dij = Sii + Sjj − 2Sij . We can again use the projection Q with Qij = δij − 1

n
to transform D into centered inner product form via S = − 1

2QDQ, which eliminates
contributions of the mean vector while preserving the distances. Formally, this choice
is justified by the observation that D is a matrix of squared distances if and only if
S = − 1

2QDQ is positive semi-definite [10].
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Relation to multi-dimensional scaling. Classical multi-dimensional scaling [22] can
be interpreted as using a distance model

−D ∼ W(1,∆) with ∆ = ∆0 −M − σ2I, (16)

where ∆0 stems from the transformation kernel 1, M is a low-rank matrix used to
approximate the observed matrix D, and σ2I is a white noise term accounting for devi-
ations from the low-rank model, see [21]. As before, the transformation S = −QDQ
eliminates the contribution of the kernel and transforms the data into inner product
form. The matrix M is then computed as the best low-rank approximation to S, which
is the rank-constrained maximum likelihood solution in the Wishart model, see [21].
The above expression Σ = σ2I + M is essentially the same as our covariance model
ΣB = αI + βB. The only difference is that B is not an arbitrary low-rank matrix, but
additionally constrained to be a binary partition matrix. Thus, our partitioning model
can be understood as a binarized version of multi-dimensional scaling. The white noise
term αI corresponding to the within-class covariance has the role of absorbing the de-
viations from the low-rank model.

Shift invariance. The expected value of S ∼ Wd(ΣB) is E[S] = ΣB . Adding an
additional noise term δI shifts the expected value to ΣB +δI . Reversing this argument
for inference problems in which we observe the inner product matrix S, additive shifts
of the diagonal elements of S might be absorbed by the white noise term. Note that
such additive diagonal terms appear when shifting the off -diagonal elements of D.
Using sufficiently large shifts ensures that there exists an embedding space in which
the transformed dissimilarities D′ can be represented as squared Euclidean distances.
The idea behind additive shifts is the following: if we observe a matrix D which gives
rise to an indefinite matrix S = − 1

2QDQ, there are basically two options: either we
can directly use S, irrespective of negative eigenvalues, or we can try to “heal” the
negative eigenvalues. Concerning the first option, it is unclear what bias is introduced
due to the model mismatch. “Healing” the negative eigenvalues, on the other hand,
introduces another sort of bias. In the ideal case, we can find a transformation which
exploits some invariance of the analysis model. If the model is invariant under additive
shifts, we can safely transform any (symmetric) matrix D in such a way that it will
be inside the model space. Note that for our clustering model, even symmetry is not
required, since all conditionals are invariant under S ← 1/2(S + St). We first show
that exact shift invariance is possible, but only under assumptions that eliminate the
probabilistic nature of the model.

The inverse matrix Σ−1
b = (αInb

+ βEnb
)−1 can be analytically computed as

1
α

(
I − β

α+nbβ Enb

)
= 1

α

(
I − θ

1+nbθ Enb

)
with θ := β/α. (17)

Denoting by d
2A the argument of the exponential function in (15), a shift S′ = S + δIn

implies

αA′ := −α tr((αInb
+βEnb

)−1(Sb +δI)) = nbθ
1+nbθ (nbS̄b +δ)−tr(Sb)−nbδ, (18)
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where S̄b denotes the mean value of the b-th block of S. For α→ 0, it follows that

αA′ ≈ nbS̄nb
−tr(Sb)−(nb−1)δ ⇒

∑
b∈B αA′ ≈ −tr(S)−(n−kB)δ+

∑
b∈B nbS̄b

(19)
with kB being the number of blocks in the partition B. This result implies that for
fixed α, θ, kB , the conditional posterior of partitions is approximately shift invariant.
In the hard-clustering limit as α→ 0 this statement becomes exact. The price for exact
shift invariance is the problem of estimating kB . The restriction to hard assignments
precludes an intrinsic measure of “clusterability”: the model degenerates to an com-
binatorial optimization problem in which we need to fix k. The optimal solution will
then automatically include all kB = k blocks. Note that the limit α → 0 defines the
pairwise clustering cost function [8] whose invariance properties have been studied in
[3].

Here, we consider more realistic situations in which both the covariance param-
eters and kB are estimated. Intuitively, we assume that shifts are “absorbed” in the
within-class term, i.e. α′ = α + δ. Analytically studying the effects on the partition
when both α and θ are varying is complicated, in particular due to the influence of the
normalization term |Σb|−(d/2) in (15). Thus, we only consider an idealized scenario in
which the matrix S has a distinct cluster structure which is consistent with our model.
In such a case, there will be a matrix Σ′ = α′I + βB′ that is reasonably close to
the observed S, and the ML-estimate of the covariance matrix in the Wishart model is
Σ̂B ≈ Σ′ = α′I+βB′. If there is an additional shift Sshifted = S+δI , the ML-estimate
will be Σ̂shifted

B ≈ (α′ + δ)I + βB′. The normalization term, however, decreases, in-
dicating that the distribution is smeared out due to the increased noise term. Note that
we have neglected the influence of the prior Pn(B) defined in eq. (12). For moderate
shifts, however, the deviations from “local” uniformity might be reasonably small. De-
spite the approximate nature of this plausibility argument, our simulation experiments
nicely corroborate the intuition that moderate shifts can be absorbed in the white-noise
term — at least if the data exhibits a clear cluster structure. In practice, however, ob-
served matrices only rarely show a distinct block structure, and the additional noise
component introduced by large shifts severely hampers the estimation of a stable par-
tition, both for our probabilistic model and for the hard-clustering counterpart. Thus,
the real benefit of any form of shift invariance might be a justification for first trans-
forming the data into inner product form and then applying (kernel-)PCA-denoising to
eliminate the additional noise, which is exactly the approach suggested in [23].

Inference via Gibbs sampling. The main idea in Gibbs sampling is to iteratively
sample parameter values from the full conditionals, For the sake of simplicity, we only
consider the update equations for the partition B. Assume that n objects in S have
already been partitioned according to B. Conditioning on S and B, we want to compute
the assignment probabilities for a new object o∗, characterized by an additional row and
column in the augmented matrix S∗. Due to permutation invariance, we can always
assume that S∗ is ordered according to blocks in B and that the additional row/column
is the last one in some block. Either the new object is assigned to an existing block b,
i.e. o∗ → b ∈ B, or it is assigned to a new block which will be denoted by o∗ → ∅.

Consider first the case o∗ → b ∈ B. Assume that the new row/column is the last
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one in this block. The number of objects in block b is increased by one, i.e. n∗b = nb+1,
and the new block mean is denoted by S̄∗b . With a slight abuse of notation, we write
S∗j for S∗nb+1,j and S∗∗ for S∗nb+1,nb+1. All symbols without (∗) refer to the old state
with n objects. Denote by d

2A∗(b) the new argument in the exponential function in
(15). Then,

A∗(b) = A + 1
α

(
(nb+1)θ

1+(nb+1)θ (nb + 1)S̄∗b −
nbθ

1+nbθ nbS̄b + S∗∗

)
. (20)

Consider now the case of assigning o∗ to a new cluster, i.e. o∗ → ∅. A new singleton
cluster is added, i.e. k∗B = kB +1. The associated argument in the exponential function

becomes: A∗(∅) = A+ 1
α

(
θ

1+θ S∗∗ + S∗∗

)
. For the conditionals, we need to multiply

the exponentiated terms above with the contributions of both the normalization term in
(15) and the prior. Denoting these terms by N∗(b) and N∗(∅), and using Γ(x + 1) =
xΓ(x) in (12), we find

N∗(b) ∝
[

1+θnb

1+θ(1+nb)

](d/2)

· (nb + λ/k), N∗(∅) ∝ (1 + θ)−
d
2 ·λ(1− kB/k). (21)

2.3 Experiments
In a first experiment we analyze the shift-invariance based on a matrix sampled from
W(ΣB) with a two-block partition (30%/70%) and α = 1, θ = 20. Using relatively
uninformative priors on α and θ, we add increasing shifts δI to S. To compensate
for δ, we adjust the priors over α and θ by shifting their expected value accordingly.
Figure 1 shows that over a large range of δ-values, the shift is indeed absorbed in α,
and the estimate for β = α · θ is roughly constant. Deviations from the “true” partition
are summarized in the expression

P
ij(B

true
ij − Bsampled

ij ). Note that even for large shifts
(δ = 1000 is roughly 25% of the largest eigenvalue of S), the partition remains rather
stable. It is clear that we consider an idealized scenario, but nevertheless we conclude
that our intuition about absorbing shifts seems to be correct. In this experiment the
influence of λ is extremely small: λ can be changed over at least 10 orders of magnitude
without affecting kB .

In the two following experiments we quantitatively investigate the clustering per-
formance in terms of the size-normalized within-sum-of-squared errors (distances),
SSE =

∑
b∈B nbD̄b, and compare the outcome with the Affinity Propagation (AP)

method based on two datasets described in [24]. The first dataset contains similarities
between 900 face images from the Olivetti database, available at
http://www.psi.toronto.edu/affinitypropagation/). AP has been reported to exhibit some
advantages over other centroid-based approaches on this dataset. The results in Figure
2 (top row) show that our model consistently outperforms AP, which means that bet-
ter centroids have been found (note, however, that in this comparison our model has
the advantage of not being restricted to choosing exemplars as centroids). Neverthe-
less, we conclude that in terms of optimization quality, the Wishart-Dirichlet model is
a strong competitor to AP. Even more important, however, is the observation that all
partitions with kB < 100 are very implausible, because such a low number of clusters
can only be obtained by “forcing” the model to use a very low θ-value via the prior,
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see the right panel: sampled values “hitting” the upper boundary of admissible values
indicate that the model is entirely forced into a certain direction by the prior. Note that
θ is the quotient of between-class to within-class variance, and θ < 1 means that there
is hardly any cluster structure in the data.
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Figure 1: Toy example for analyzing shift invariance. Linearly increasing red circles:
mean values of estimated α-parameter under variation of the shift δ. Almost horizontal
black squares: mean values of estimated β-parameter (scaled by a factor of 10 for better
visualization). Color-coded histogram: differences between true and sampled partition.
Right panel: three sampled partitions.

Using the AP model, on the other hand, we can simply “slide” through all kB-
values by changing the “affinity”-parameter from −74 to −15. From the AP model
alone, we find it difficult to see why one of these results should be preferred over any
other one (in [24] the model with kB = 62 has been chosen for further analysis).
The computational workload is not really an issue in this example, since even several
millions of Gibbs sweeps can be computed reasonably fast (i.e. over night). A similar
situation occurs for another dataset containing KL-divergences between sentences in a
manuscript, which was used in [24] to demonstrate the performance of AP in situation
where metric axioms are violated. Figure 2 (bottom row) clearly shows that (after
symmetrizing an shifting) our model is a strong competitor in terms of optimization
quality. The right panel again indicates that models with a low number of clusters (say
< 70) are not very plausible due very small θ-values.

3 Conclusion
A partitioning model is called shift invariant, if the choice of a partition is not influ-
enced by additive constant shifts of the off-diagonal elements in D. If a model exhibits
this invariance property, it is always possible to construct an underlying Euclidean em-
bedding space without altering the partition, a situation which we describe as “structure
preserving embedding”.
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Figure 2: Clustering the face dataset (top row) and text dataset (bottom row) from
[24]. Left: within SSE obtained from Affinity Propagation with different affinity-
parameter values (blue circles) and from our algorithm under variation of the prior on
θ (color-coded histogram). Right: Sampled θ values (blue) and range of possible θ
values in the discretized prior (reddish-shaded area).
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We have shown that the pairwise k-means cost function exhibits strict shift invari-
ance, which –in terms of group structure– defines a structure preserving embedding
model. However, this analysis is restricted to a certain cost function, and in particu-
lar to considering scenarios in which the number of clusters k is defined in advance.
The latter requirement must be considered a severe shortcoming in most real applica-
tions, because information about the number of clusters usually rare. Therefore, we
tried to broaden our viewpoint on pairwise clustering by considering a probabilistic
version of the pairwise k-means model. The main idea is to construct a stochastic pro-
cess on similarity matrices ad use a Dirichlet process prior to estimate the number of
“blocks” in a partition matrix. Concerning structure preserving embeddings defined by
constant-shift embeddings, we have shown that the clustering model induced by this
Wishart-Dirichlet model can absorb “moderate” shifts in the white-noise term. How-
ever, a particular problem of this model is that the process of estimating the number
of clusters in a data-adaptive fashion is also affected by the shift: shifting increases
the tendency to introduce new clusters, since under the shift the mutual similarities
between all objects decrease. It seems that strict shift invariance can only be achieved
if the number of clusters is fixed, which somehow contradicts our efforts to generalize
the k-means setting.

Considering the relevance of structure preserving embedding for the overall goal
of the SIMBAD project, namely the development of a new theory of similarity-based
pattern recognition, our current view is ambivalent: strict structure preservation could
be proved only for a small set of clustering methods, like pairwise k-means and certain
graph-based cut/association algorithms. All these algorithms require the user to fix
the number of clusters in advance. A “relaxed” version of shift invariance holds for a
probabilistic version of the pairwise k-means method, but we have to admit that shift
invariance and estimation of the number of clusters might be two conflicting goals. As
an alternative the number of clusters k can be estimated by the information theoretic
approach to cluster valudation using approximation set coding (ASC) [25].

When it comes to building a theory on similarity-based pattern recognition, all these
algorithms may be seen as “negative results”, since they are essentially blind against
Euclidean- or even metric violations. In other words: if one wants to learn something
about clustering similarity data, one should look at different clustering procedures.
While this result may be considered an interesting insight, it is still a very limited
result due to the small number of algorithms that could be identified to fall into this
category.
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