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Deliverable D5.1

Equilibrium Concepts for Pattern Recognition

1. Introduction

The objective of workpackage WP5 is to develop novel, general learning models which do not 

require the (geo)metric assumption, thereby working directly on the original data. Game 

theory offers an attractive and unexplored perspective that serves well our purpose. 

In task WP5.1 we aimed at developing a game-theoretic framework based on a formalization 

of the competition between the hypotheses of class membership. According to this 

perspective, the focus shifts from optima of objective functions to equilibria of (non-

cooperative) games. The lines of research in the first 6 months of the workpackage have 

concentrated on four lines of investigation

1. Grouping and Matching: extensions to a game-theoretic framework for grouping 

have been studied, allowing for the enumerationand extraction of overlapping 

clusters, and a general matching framwork which provides very robust parameter 

estimation.

2. Algorithms:  new and efficient algorithms for extracting clusters have been proposed 

and analyzed.

3. High order and contextual grouping: generalizations that allow k-way interactions 

among players have been proposed and studied.

4. Equilibrium concepts for clustering: new game-theoretic concepts that generalize 

the notion of Nash equilibrim have been studied in relation to classification problems.

In the following we will report the main results from each line of investigation.

2. Grouping and matching

We explored and extended  the grouping framework  introduced in (A. Torsello, S. Rota Bulò, 

and  M.  Pelillo,  2006),  which  saw the  introduction  of  a  new framework  for  grouping  and 

clustering  derived  from  a  game-theoretic  formalization  of  the  competition  between  the 

hypotheses of group membership.  The basic idea behind the proposal is  as follows: the 

hypotheses that each object belongs to the figure compete with one-another, each obtaining 

support from compatible edges and competitive pressure from all the other. Competition will 

reduce  the  population  of  individuals  that  assume hypotheses  that  do  not  receive  strong 

support from the rest, while it will allow populations assuming hypotheses with strong support 

to  thrive.  Eventually  all  inconsistent  hypotheses  will  be  driven  to  extinction,  while  all  the 

surviving  hypotheses  will  reach  an  equilibrium.  At  equilibrium  all  surviving  hypotheses 

receive the same average support, hence exhibiting the internal coherency of a group, while 

all the extinct hypotheses must have a lower support, hinting to external incoherency. With 

such  formalization  the group  corresponds  to  the  evolutionary  stable  strategies  of  a  non-
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cooperative  grouping  game,  which  are  found  using  replicator  dynamics,  a  classic 

formalization of a natural selection process (J. W. Weibull, 1995). 

The grouping  game is  defined as  follows:  Assume a preexisting set  of  objects  O and a 

(possibly asymmetric)  matrix of  affinities  A between the elements of  O.  Two players with 

complete knowledge of the setup play by simultaneously selecting an element of O. After both 

have shown their choice, each player receives a payoff, monetary or otherwise, proportional 

to  the  affinity  that  the  chosen  element  has  with  respect  to  the  element  chosen  by  the 

opponent. Clearly, it is in each player’s interest to pick an element that is strongly supported 

by the elements that the adversary is likely to choose. 

2.1 Preliminaries

Let us give some notation and review a few fundamental concepts of Game Theory (J. W. 

Weibull,  1995).  Let  O={1,...,  n} be  the  set  of  available  elements  (pure  strategies  in  the 

language of game theory) and, A=(aij) be the n×n element-affinity matrix, also called payoff or 

utility matrix in game theory. Specifically, for each pair of strategies i,j  O∈ , aij represents the 

payoff of an individual playing strategy i against one playing strategy j. A mixed strategy is a 

probability distribution x=(x1,...,xn)T over the available strategies O. Clearly, mixed strategies 

are constrained to lie in the standard simplex of the n-dimensional Euclidean space ℝn.

The support of a mixed strategy x, denoted by σ(x), is defined as the set of elements chosen 

with non-zero probability:  σ(x)={i   O | x∈ i > 0}. The expected payoff received by a player 

choosing element i when playing against a player adopting a mixed strategy x is (Ax)i=∑j aij 

xj , hence the expected payoff received by adopting the mixed strategy y against  x is  yTAx. 

The best replies against mixed strategy x is the set of mixed strategies

while the best pure replies against mixed strategy  x, denoted with  Ω(x), is the set of pure 

strategies that are best replies to x. It can be shown that, if y is in β(x), then each strategy in 

σ(y) is in Ω(x). A strategy x is said to be a Nash equilibrium if it is a best reply to itself, i.e., y∀  

 ∆, x∈ TAx ≥ yTAx . It is easy to show that this implies that i  σ(x)∀ ∈  we have (Ax)i=xTAx; that 

is,  the payoff  of  every strategy in the support of  x is constant.  Furthermore,  note that,  in 

general, we have σ(x)  Ω(x)⊆ .

Within our setting, Nash equilibria abstracts well the main characteristics of a group: internal 

coherency,  that  is,  a  high  mutual  support  of  all  elements  within  the  group,  and external 
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incoherency, or low support from elements of the group to elements that do not belong to the 

group.  In  fact,  any  element  i   σ(x)∈  of  a  Nash equilibrium  x receives  from  x the same 

expected payoff (Ax)i=xTAx, while elements not in Ω(x) receive a lower or equal support from 

the elements of the group. 

Note, however, that external incoherency is not strict:  while strategies that are not in  σ(x) 

cannot have higher than average payoff, they can have a payoff equal to xTAx like elements in 

the  group.  For  this  reason  we  will  impose  a  more  stringent  requirement,  namely  that 

Ω(x)=σ(x). This, however, is still not enough, as we also require the solution to be stable and 

unambiguous, that is we require the solution to be isolated and unique in β(x). To this end, 

here  we  undertake  an  evolutionary  game  theoretic  analysis  of  the  possible  strategies 

available  to  each  player.  Evolutionary  game  theory  (J.  W.  Weibull,  1995)  considers  an 

idealized scenario whereby pairs of individuals are repeatedly drawn at random from a large 

population to play a symmetric  two-player  game. In  contrast  to  traditional  game theoretic 

models, players are not supposed to behave rationally or to have complete knowledge of the 

details of the game. They act instead according to a pre-programmed behavior pattern, or 

mixed strategy, and it is supposed that some selection process operates over time on the 

distribution of  behaviors.  In  our  grouping-game setting,  each player is preprogrammed to 

select each element in  O with a certain probability and the evolutionary selection will allow 

players that select elements with high average support to thrive, while driving players that 

choose elements with low support to extinction. In our grouping setup, we expect the selective 

pressure to drive to extinction the players programmed to select elements that are not of the 

cluster selected by the adversary, converging to a population selecting elements of a single 

cohesive group. 

In a evolutionary setting, a strategy x is said to be an evolutionary stable strategy (ESS) if it is 

a Nash equilibrium and 

y  ∆ x Ax = y Ax  x Ay > y Ay.∀ ∈ ⇒

This condition guarantees that any deviation from the stable strategies does not pay providing 

a constraint that forces the group to be non-ambiguous. Indeed, the fact that x is ESS implies 

that it is an isolated Nash equilibrium, or that there exists an open set U containing x with no 

other other Nash equilibrium within it. Hence, evolutionary stable strategies with  σ(x)=Ω(x) 

satisfy all the conditions we posed for a cluster: internal coherency, external disomogeneity, 

stability and non-ambiguity.

In  (A.  Torsello,  S.  Rota  Bulò,  and  M.  Pelillo,  2006)  was  introduced  a  combinatorial 

characterization of the evolutionary stable strategies of the grouping game in two important 

cases: binary affinities and general continuous affinities.
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A clustering problem with binary affinities can be described as a directed graph where the 

presence of a directed edge from node i to node j implies a positive compatibility of node  j 

with node  i.  In this context  our notion of  cluster becomes a straightforward extension  to 

directed graphs of the concept of clique. Let G(V, E) be a directed graph with vertex set V and 

edge set E  V × V , a S  V⊆ ⊆  is a doubly-linked clique if i, j  S, (i, j)  E∀ ∈ ∈ , and (j, i)  E∈ . 

Furthermore, if there is no j  (V \ S) ∈ such that i  S, (i, j)  E∀ ∈ ∈ , the doubly linked clique is 

said to be saturated. In a situation with a binary affinity matrix A, evolutionary stable strategies 

turn out to be in a one-to-one relationship with saturated doubly linked cliques of a graph with 

A as its adjacency matrix. In the continuous case, on the other hand, the evolutionary stable 

strategies were shown to be a directed generalization of the concept of dominant sets (M. 

Pavan and M. Pelillo, 2007).

It  is interesting to note the role of the asymmetry in the selection of the cluster. First, the 

elements that belong to a group must all be mutually compatible, hence forcing, in the binary 

case, a strong symmetry within the cluster. In the general case the affinities within the cluster 

must not be completely symmetric, but there must be a strong mutuality between each pair of 

elements so that compatibility must be high in both directions. The asymmetry comes into 

play only in inside/outside relations through the condition that a doubly-linked clique must not 

be fully connected to an external node to be evolutionally stable. This condition allows the 

asymmetry to intervene in the selection of an equilibrium by dominating strategies belonging 

to a clique. 

2.2 Enumeration and Overlapping Groups

The first extension regarded the possibility of extracting overlapping clusters in a pairwise 

context, and it is based on two important properties of the game theoretical approach: First, 

the  approach  functions  as  a  multi  figure/ground  discrimination  algorithm,  extracting  only 

cohesive  groups,  while  leaving  spurious  entries  unclustered.  Second,  the  clusters  are 

extracted  as  surviving  strategies  at  an  equilibrium,   thus  different  equilibria  can  provide 

different,  possibly  overlapping,  groups.  Transforming  the  payoff  matrix  that  drives  the 

evolution of the selection process, we can render unstable previously extracted equilibria, 

while not affecting any other cluster. This guarantees that once found, a cluster will not be 

extracted again.  The net  result  of  this  process is an approach to  enumerate  all  possible 

groups approximately in order of relevance. This approach was used in (S. Rota Bulò, A. 

Torsello, M. Pelillo, 2009) to enumerate matches for shape recognition, while in (A. Torsello, 

S.  Rota Bulò,  M. Pelillo,  2008) the approach was generalized to continuous affinities and 

applied to perceptual grouping and image segmentation. 

First we will focus our attention on the enumeration process using symmetric binary affinities. 

In this setting the approach results in an enumeration of cliques in a graph.
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In order to render a given ESS x unstable, it is sufficient to drop the Nash condition for x. A 

simple way to do it without affecting other equilibria, is to add a new strategy z that is a best 

reply to x, but to no other ESS. This way, x will be no longer asymptotically stable.

Let  G=(V,E) be  an  undirected  graph  and  G'=(V',E') be  its  directed  version  obtained  by 

replacing each edge with two directed edges: one for each direction. Hence, for each (u,v) ∈  

E, we have (u,v)  E'∈  and (v,u)  E'∈ . Given a set ∑ of maximal cliques of G, we define the 

∑extension G∑ of G by adding new nodes to G' as follows. For each clique S ∈ ∑, we create 

a new vertex  v, called  ∑-vertex, and put edges from  v to each vertex in  S and from each 

vertex in V\S to v. After this, each ∑-vertex v dominates a particular clique S of ∑. Further, 

each vertex not in  S dominates the  ∑-vertex  v so that it cannot form a new asymptotically 

stable strategy. Given a set of maximal cliques  ∑ of an undirected graph  G, there exists a 

one-to-one correspondence between the set of maximal cliques of G not in ∑ and the set of 

ESSs of a two-player symmetric game associated to the extended graph G∑. 

Our  enumerative  algorithm  uses  this  result  in  the  following  way.  We  iteratively  find  an 

asymptotically stable point through the replicator dynamics. If we have an ESS, then we have 

found a new maximal clique. After that, we extend the graph by adding the newly extracted 

clique to ∑, thus rendering its associated strategy unstable, and reiterate the procedure until 

we have enumerated the selected number of maximal cliques. The theoretical results and the 

way the extension is  constructed guarantee that  our  algorithm is  correct,  i.e.,  each ESS 

corresponds to a maximal clique that has not already been enumerated, and complete, i.e., 

each remaining maximal clique still corresponds to an ESS.

 :   ∑-      Figure 1 Example of extension and the enumeration of cliques

When applied to the problem of finding a clique of maximum cardinality the approach allows 

to improve on an initial possibly suboptimal solution. However, the major advantage of our 
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enumerative method emerges from the enumeration of matches expressed as cliques in an 

association graph. In this context, the enumeration approach allows one to look for a set of 

matches  that  maximizes  a  more  generic  function  that  is  only  weakly  correlated  with  the 

cardinality of the match and that cannot be expressed in terms of the weight of a clique.

In  the  continuous  case  we  adopt  a  similar  approach  to  iteratively  render  unstable  all 

previously extracted ESSs by adding new strategies that  are best replies to the previous 

ESSs, but to no other. This way the previous equilibria will no longer be asymptotically stable. 

Let Σ be a tuple of ESSs of a game with payoff matrix A. So for example if x and y are ESSs 

of a doubly symmetric game then Σ = (x, y) and with Σi we select the i-th ESS. . The Σ-

extension AΣ = (aΣ ) of the payoff matrix A is defined as follows.

where  α > β  and  β = max aij . Let  Φ be a two-player doubly symmetric game with payoff 

matrix A and ΦΣ be a two-player game with payoff matrix  AΣ . If  x is a mixed strategy of  Φ 

then  x is a mixed strategy of  ΦΣ obtained from  x  by setting the components relative to Σ-

strategies to 0.

With these definitions we have the following: Let Φ be a two-player doubly symmetric game 

with payoff matrix A and let Σ be a tuple of ESSs of Φ. Furthermore let  ΦΣ be a two-player 

game with payoff matrix AΣ . Then x is an ESS of Φ not in Σ if and only if x is an ESS of ΦΣ .

We use this result to enumerate the clusters in the following way: We iteratively find new 

dominant sets by looking for an asymptotically stable point using the replicator dynamics. 

After that, we extend the graph by adding the newly extracted set to Σ, hence rendering its 

associated strategy unstable, and reiterate the procedure until we have enumerated all the 

groups and hence are unable to find new dominant sets.

Experiments on perceptual grouping problems showed that the approach is able to extract 

groups that overlap due to ambiguities.

2.3 Matching and Parameter Estimation

A further  extension of  the framework  regarded the use of  a game theoretic  approach to 

matching and robust parameter estimation. In this framework matching can be formulated as 

a competition between correspondence hypotheses and the selection process leads to an 
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equilibrium where only compatible correspondences survive. This matching process can then 

be used as inlier selection for robust parameter estimation.

This idea was first explored in (A. Albarelli, M. Pelillo, and S. Viviani 2008) for an application 

to symmetry estimation and then further refined in (A. Albarelli, S Rota Bulò, A. Torsello, and 

M. Pelillo, 2009).

The  first  parameter  estimation  approach  (A.  Albarelli,  M.  Pelillo,  and  S.  Viviani  2008) 

concentrates on the extraction of symmetries from point-sets. The fundamental idea is to cast 

the robust estimation problem into one of the extraction of a consensus structure. Given a set 

of points  P={p1, p2,..., pn}, their Symmetry Consensus Graph (SCG) is the undirected graph 

GB = (VB , EB ) where VB = {(pa , pb )  P |a < b}∈  is the set of unordered pairs in P and where 

((pa , pb ), (pc , pd ))  E∈ B if and only if the plane between pa and pb is exactly the same plane 

between  pc and  pd. Each vertex in such a graph represents a pair of points in the original 

object and is attributed with the plane that separates such points in a symmetric way. The key 

property of this graph is that two vertices are connected if and only if they share the same 

plane. As this is an equivalence relation the transitive property holds and it is easy to see that 

each set of vertices that share the same symmetry plane with each other forms a complete 

subgraph (clique). By building the SCG over a set of points we can thus cast the search for 

the most relevant symmetry planes into the search for the largest cliques over the Consensus 

Graph. However, the extraction of a maximum consensus graph is an NP-complete problem 

and the constraint of exact symmetries are very strict in practical scenarios. In fact noise, 

numerical errors and not perfect symmetries in the object itself make it unlikely that many 

pairs of points  share exactly the same symmetry plane. 

Figure 2: Symetry Consesus Graph (top) and Weighted Symmetry 

Consensus Graph (bottom) for a set of points
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One possible solution to this problem could be the use of a threshold in order to state that two 

plane are equal. Unfortunately, this approach introduces two more hurdles: the first is the 

correct choice for such threshold, which is not different from the choice of the correct bin size, 

the other is that this way the transitive property would not be valid anymore, thus breaking the 

correspondence between cliques in the Consensus Graph and symmetries.

We  extend  the  Symmetry  Consensus  Graph  to  a  weighted  graph  where  each  edge  is 

weighted according to the similarity between the planes associated to the vertices connected: 

Given a set of points P={p1, p2,..., pn}, their Weighted Symmetry Consensus Graph (WSCG) is 

the edge weighted undirected graph GW = (VW , EW , ω) where VW = {(pa , pb )  P |a < b}∈  is 

the set of unordered pairs in P , EW = VW × VW is the set of edges and ω : EW → ℝ+ is a weight 

function that assigns to each edge a positive real value ω((pa, pb), (pc, pd)) proportional to the 

similarity between the symmetry plane of pa, pb and the symmetry plane of pc, pd.

We are  interested in  finding large sets  of  vertices  that  are  all  associated to  very similar 

symmetry planes. In other words, since the edges reflect the similarity between planes we are 

interested in finding sets of vertices that present a high pairwise similarity among them and a 

low pairwise similarity with respect to vertices external to the set itself. These two properties 

(high internal similarity and low external similarity) are commonly used to define the notion of 

a  cluster.  For  this  reason  we  formulate  the  extraction  of  the  symmetry  pair  forming  the 

consensus graph as one of extracting a cluster of similar symmetry pairs. 

The idea of using a clustering approach on the correspondences to attain robust parameter 

estimation was further generalized in (A. Albarelli, S Rota Bulò, A. Torsello, and M. Pelillo, 

2009),  where a generic game-theoretic matching approach was presented.  The proposed 

approach is quite general since it can be applied to any formulation where both the objective 

function and the feasible set can be defined in terms of unary and pairwise interactions. The 

main idea is to  model  the set  of  possible correspondences as a set  of  game strategies. 

Specifically,  we  formulate  the  matching  problem  as  a  non-cooperative  game  where  the 

potential  associations  between  the  items  to  be  matched  correspond  to  strategies,  while 

payoffs  reflect  the  degree  of  compatibility  between  competing  hypotheses.  Within  this 

formulation, the solutions of the matching problem correspond to evolutionary stable states 

(ESS’s),  a  robust  population-based generalization  of  the notion of  a  Nash equilibrium.  A 

distinguishing feature of the proposed framework is that it allows one to deal with general 

many-to-many matching problems even in the presence of asymmetric compatibilities.

Let O1 and O2 be the two sets of features that we want to match, we define the set of feasible 

associations  A  O⊆ 1 × O2 the set  of  relations between  O1 and  O2 that  satisfy the unary 

constraints. Hence, each feasible association represents a matching hypothesis. We assume 

that we can compute a set of pairwise compatibilities  C  : A  × A →  ℝ+ that measure the 
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support  that  one  association  gives  to  the  other.  Here,  the  self  compatibilities,  i.e.,  the 

compatibilities that an association gives to itself, are assumed to be zero.

In this formulation, a sub-match (or simply a match) is intuitively a set of associations, which 

satisfies  the  pairwise  feasibility  constraints,  and  two  additional  criteria:  high  internal 

compatibility, i.e. the associations belonging to the match are mutually highly compatible, and 

low external compatibility, i.e. associations outside the match are scarcely compatible with 

those in it.  This definition of match allows us to abstract from the specific problem, since 

domain-specific information is confined to the definition of the compatibility function. Further, 

we are able to deal with many-to-many, one-to-many, many-to-one and one-to-one relations 

in an uniform way, as we do not impose restriction on the how the associations are selected, 

but incorporate the constraints into the compatibilities.

Following our game-theoretic approach, we define a matching game: Assume that we have 

two sets of objects  O1 and  O2 , and a compatibility function  C. Two players with complete 

knowledge of  the setup play by simultaneously  selecting an association.  After  both  have 

shown their choices, each player receives a payoff, monetary or otherwise, proportional to the 

compatibility  of  the  selected  association  with  respect  to  the  association  chosen  by  the 

opponent.  Clearly,  it  is  in  each player’s  interest  to  pick an association,  which is strongly 

supported by the association that the adversary is likely to choose and, assuming no prior 

knowledge of the inclination of the adversary, the best strategy for a player becomes the 

selection of associations belonging to strongly supported matches.

Within our matching setting, Nash equilibria are good candidates for a match, as they satisfy 

both  the internal  and external  compatibility  criteria.  In  particular,  the internal  compatibility 

criteria allows for a more robust match as it guarantees that we pick only association that we 

are confident belong to the same matching.

A  main  characteristic  of  the  proposed  approach  is  that  association  pairs  that  have  zero 

compatibility cannot be in the same selected sub-match. This means that pairwise constraints 

can be enforced by forcing to zero the compatibility between associations that do not satisfy 

the constraints.

The  approach  was  tested  both  on  matching  image  regions  obtained  with  an  automatic 

segmentation algorithm, and by estimating an image transformation by matching features 

extracted from affinely-transformed images. The latter application is particularly interesting, as 

the  robustness  induced  by  the  internal  compatibility  criteria  induces  an  improved  inlier 

selection  mechanism  that  allows  the  approach  to  outperform  RANSAC  in  parameter 

estimation.
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3. Algorithms

We explored new efficient algorithms to extract Nash equilibria as a tool to achieve efficient 

classification. The replicator dynamics used in previous work, and in general all the payoff-

monotonic dynamics have serious drawbacks for the use in automatic classification. First, the 

simplex  and  its  faces  are  invariant  under  imitation  dynamics  (J.  W.  Weibull,  1995).  This 

observation has two implications: fixed points under imitation dynamics may not  be Nash 

equilibria, and every trajectory never reaches the boundary of the face from which it started in 

finite time. This problem forces the need of approximating the support by setting a  completely 

arbitrary threshold to decide whether a strategy has non-zero support. Second, each iteration 

of  the  dynamics  is  quadratic  in  the  number  of  elements  to  be  classified,  leading  to 

computation times that are too high for large scale problems, thus requiring the definition of 

out-of-sample approaches.

Building upon the invasion barrier paradigm,  we proposed an Infection and Immunization 

Dynamics (InImDyn),  modelling a plausible adaptation process in a large population. This 

dynamics exhibits a better asymptotic behaviour compared to other popular procedures like 

Replicator Dynamics, and can establish support separation in finite time, which can never be 

achieved by any interior-point method or any other evolutionary game dynamics. (S.  Rota 

Bulò and I.  Bomze, 2009). This last property is particularly interesting as it eliminates the 

need for an arbitrary threshold to extract the members of a cluster.

Let x  ∆∈  be the incumbent population state, y be the mutant population invading x and let z 

=  (1  −  ε)x  +  εy be the population state  obtained by injecting into  x a  small  share of  y-

strategists. Then the score function of y versus x is given by

The (neutral) invasion barrier bx(y) of x  ∆∈  against any mutant strategy y is defined as the 

largest population share ε of y-strategists such that for all smaller positive population shares 

ε, x earns a higher or equal payo  than y in the post-entry population ff z. Formally

Now x is neutrally stable if and only if it is protected by a positive invasion barrier (I. M. Bomze 

and J. W. Weibull 1995): x is neutrally stable if and only if bx(y) > 0 for all y  ∆∈  .

Given populations  x,  y   ∆∈ ,  we say that  x is  immune against  y if  bx(y)  >  0.  Trivially,  a 

population is always immune against itself. Note that,  x is immune against  y if and only if 

either  π(y − x|x) < 0 or  π(y − x|x) = 0 and  π(y − x) ≤ 0. If  π(y − x|x) > 0 we say that  y is 

infective for x. Hence, the set of infective strategies for x is given by
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Consider  y  ∈ (x); clearly, this implies  bx(y) = 0. If we allow for invasion of a share  ε of  y-

strategists as long as the score function of  y versus x is positive, at the end we will have a 

share of δy(x) mutants in the post-entry population, where

Note that if y is infective for x, then δy(x) > 0, whereas if x is immune against y, then δy(x)= 0. 

Further note that all the above concepts can be straightforwardly extended to contests with 

more than two participants and/or correlated individual behavior, where the score functions 

may be nonlinear in ε (I. M. Bomze and J. W. Weibull 1995).

Given these definitions we have the following result: Let y  ∈ (x) and let z = [1 − δy (x)]x + 

δy(x)y ,then z is immune against y.

The core idea of the proposed approach consists in selecting a strategy y which is infective 

for the current population x. By allowing for invasion we obtain a new population z which is 

immune to  y.  This  idea suggests  the  following class of  new dynamics  which  for  evident 

reasons is called Infection and Immunization Dynamics (InImDyn):

where S : ∆ → ∆ is a strategy selection function, which returns an infective strategy for x if it 

exists, or x otherwise:

By  reiterating this  process of  immunization we aim at  reaching a  population state  x  that 

cannot be infected by any other strategy. If this is the case then x is a Nash strategy.

Depending on how we choose the function S(x), we may obtain di erent dynamics. One inff  

particular, which is simple and leads to nice properties, consists in allowing only infective pure 

strategies or their respective co-strategies. This way, our equilibrium selection process closely 

resembles a vertex-pivoting method, as opposed to interior-point approaches like replicator 

dynamics.  Let x be the current population and let y be a strategy. The co-strategy of y with 

respect to x is given by 

where
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Consider the strategy selection function SPure(x), which finds a pure strategy i maximizing |π(ei  

− x|x)|, and returns ei, ei
x, or x according to whether i is an increasing or decreasing direction. 

In particular, let M(x) be a (randomly or otherwise selected) pure strategy such that

where   and  .   

Then SPure(x) can be written as

A possible interpretation of Pure InImDyn is as follows: as time passes by, an advertisement 

on the basis of the aggregate behavior of the population, tells the agents that a certain pure 

strategy is trendy or is out-of-fashion. A strategy is trendy, if it is the best performing one in 

terms of  payo  in the population,  whereas it  is  out-of-fashion,  if  it  is  the worst  still  aliveff  

performing strategy in the population. The choice among them depends on which strategy at 

most deviates from the average payo . Note that if ff x is the current population, k is trendy if 

and only if SPure(x) = ek , whereas k is out-of-fashion if and only if SPure(x) = ek
x .

Consider a scenario where agents can gather informations only about the announced strategy 

k which in turn  keeps its  trendy (out-of-fashion) status  as long as its  score function with 

respect to the population is positive (negative). As long as a strategy remains trendy, agents 

playing other strategies will switch to it when they receive the possibility of re-evaluating their 

strategy (changing this way the population state). On the other hand, as long as a strategy is 

out-of-fashion, agents playing that strategy will switch randomly to another strategy, if allowed 

for the strategy switch. Once a strategy looses its status, a new advertisement will be done on 

the basis of the current population aggregate behaviour.

Of particular interest is the behaviour for symmetric two-player games, i.e., games where the 

payoff function is characterized by a symmetric payoff matrix A. In this case we can show a 

result  which  generalizes  the  Theorem  of  Natural  Selection  proving  that  the   InImDyn 

generates a growth transformation on ∆ for the population payo  ff π(x).

Despite the fact that this is a quadratic form in  x,  we cannot invoke general convergence 

principles  for  continuous  growth  transformations  since,  unlike  many  familiar  evolutionary 

game dynamics, the transformation given by InImDyn may exhibit discontinuities. However, 

we can still show that the dynamics is globally convergent. Further, the pure-strategy variant 

has proven to be a very efficient approach for computing Nash equilibria, each iteration of the 

dynamic being computable in time linear with the number of strategies.
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4. High order and contextual grouping

The  game-theoretic  framework  naturally  generalizes  to  allow  k-way  interactions  among 

players, which is equivalent to using high-order similarity relations (hypergraphs).

To follow this direction of investigation we generalized the Motzkin-Straus theorem (T.  S. 

Motzkin and E.  G.  Straus,1965)  relating cliques  of  a  graph  to  the optima of  a  quadratic 

problem  on  the  standard  simplex,  which  is  strongly  related  to  the  evolutionary  stable 

strategies of our game theoretic clustering formulation. Our generalization links cliques of k-

uniform hypergraphs to the minimizers of a polynomial optimization problem on the standard 

simplex (S. Rota Bulò,  M. Pelillo, 2009). The problem is then optimized using a dynamical 

system that can be seen as a high-degree (or contextual)  form of the calssical replicator 

dynamics developed by Baum and Eagon in the late '60s (L. E. Baum and J. A. Eagon, 1967). 

A k-uniform hypergraph, or simply a  k-graph, is a pair G = (V, E), where V = {1, ..., n} is a 

finite  set  of  vertices  and   is  a  set  of  k-subsets  of  V,  each of  which  is  called a 

hyperedge. With this definition 2-graphs correspond to the classical notion of graphs. The 

complement  of  a  k-graph  G is  given  by   where  .  A  subset  of 

vertices C  ⊆ V is called a hyperclique if  . A clique is said to be maximal if it is not 

contained in any other clique, while it is called maximum if it has maximum cardinality. The 

clique number of a k-graph G, denoted by ω(G), is defined as the cardinality of a maximum 

clique.

Given  a  k-graph  G with  n vertices,  the  Lagrangian  of  G is  the  following  homogeneous 

multilinear polynomial in n variables:

With a view to provide a new proof of Turan’s theorem, in 1965 Motzkin and Straus (1965) 

established a remarkable connection between the clique number of a graph G with n vertices 

and the maxima of its Lagrangian over the standard simplex of ℝn. Namely, they proved that if 

x∗ is a maximizer of LG over ∆, then

Moreover, the optimizer is in the form of a characteristic vector of the clique S  V:⊆
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where |S| denotes the cardinality of S and 1P is an indicator function returning 1 if property P 

is satisfied and 0 otherwise. 

We  generalized  the  Motzkin-Straus  Theorem  to  k-graphs.  Specifically,  we  presented  a 

continuous  characterization  of  maximal  cliques  in  k-graphs  in  terms  of  minimizers  of  a 

particular (parametrized) homogeneous polynomial over the standard simplex. 

Given a k-graph G, consider the following non-linear program.

(1)

where   ∈ ℝ.

We have shown that if  G is a  k-graph and  (with strict inequality for k = 2), 

then  a vector  x  ∆ is a local (global) solution of the Program (1) if and only if it  is the∈  

characteristic vector of a maximal (maximum) clique of G.

In  order  to  grasp the intuition behind the choice of  Program (1),  let  us  investigate  some 

elementary properties of the minimizers of the first term and the second one if considered 

separately. If we take any vector x in the simplex whose support is a clique of G, then trivially 

LG(x) attains its global minimum at 0. Vice versa, for any clique C of  G, every vector in the 

simplex with support C is a global minimizer of LG over ∆. Hence, the role of the first term is to 

force  the  minimizers  to  have  a  clique  as  support.  As  for  the  second  term,  trivially,  the 

minimizer of    over ∆ is the simplex barycenter, i.e. the characteristic vector of V . 

Therefore, ideally, the role of the second term is to enforce the minimizers to have a maximal 

support and the form of a characteristic vector. By linearly combining the two terms and by 

adequate choices of  ,  we achieve a  continuous  characterization of  maximal  (maximum) 

cliques  in  k-graphs  which  consists  in  a  one-to-one  correspondence  between  the  set  of 

maximal (maximum) cliques of a k-graph G, and the local (global) solutions of (1).

This result permits to approach clique problems on k-graphs using continuous optimization 

techniques.  We  decided  to  locally  solve  Program  (1),  by  turning  it  into  the  equivalent 

maximization of a homogeneous polynomial P with nonnegative coefficients over the standard 

simplex, where
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By means of the Baum-Eagon theorem (L. E. Baum and J. A. Eagon, 1967), we obtain a 

growth transformation that accomplishes the maximization task, leading to the update rule  

xj ← αxj ∂jP(x) where  ∂j denotes partial derivative with respect to  xj and  α is a normalizing 

constant that projects x on ∆. By unfolding the partial derivative we yield

This result was used in (Rota Bulò, A. Albarelli, M. Pelillo, A. Torsello, 2008) to achieve robust 

estimation of high-order parameters of an affine transformation between two images. Assume 

that we have extracted two sets of Euclidean features F1 and F2 from the images for which we 

are estimating the affine transformation. Then we can build an auxiliary structure that is a 4-

graph H = (V, E) having associations as vertices, i.e., V  F⊆ 1  F2. The edge set E consists of 

sets of 4 associations/vertices encoding one-to-one correspondences between features and 

reflecting an affine transformation within a given tolerance. In this way, a maximal/maximum 

clique of H becomes a maximal/maximum set of image features that were distorted following 

approximately, within a desired precision, the same affine transformation, and thereby the 

affine parameter estimation problem becomes a maximum clique problem on the so defined 

auxiliary  4-graph. The method adopted to test whether an edge e ∈ E internally reflects an 

affine transformation can be defined in many ways.  Our solution is to calculate for every 

association (x, y)  ∈ e the affine transformation obtained from the remaining 3 associations 

and calculates the transformation error on  x.  If  the 4 distances are all  below the desired 

threshold ε, then the edge is kept. Note that by using this method to select edges, the user 

defined  tolerance  parameter  ε  is  expressed  in  pixels,  which  is  more  intuitive  than,  for 

example, a quantization scheme for the model parameters needed by generalized Hough 

transforms.  Once  the  auxiliary  hypergraph  H has  been  initialized,  it  suffices  to  find  the 

maximum  or  in  general  a  large  maximal  clique  in  it,  in  order  to  obtain  a  feature 

correspondence  from which  the best  affine transformation is  estimated in  a  least  square 

sense. Clearly, for the way we constructed H, the associations in the clique will all agree on 

the found affine transformation within an error of ε pixels.

The approach was further generalized in (S. Rota Bulò and M. Pelillo, 2009) to clustering with 

continuous high-order affinities. The basic idea behind our approach is that the hypergraph 

clustering problem can be considered as a multi-player non-cooperative ``clustering game”. 

Let H=(V,s) be a k-graph modeling a hypergraph clustering problem, where V={1,...,n} is the 

set of objects to cluster and s({i1,...,ik}) is the similarity function providing the similarity among 

k objects  i1,...,ik . We can build a game involving  k players, each of them having the same set 
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of (pure) strategies, namely the set of objects to cluster V. Under this setting, a population  x 

 ∆ of agents playing a clustering game is to all intents and purposes a representation of a∈  

cluster,  where  xi is the probability for object  i to be part of it.  Indeed, any cluster can be 

modeled as a probability distribution over the set of objects to cluster.

The payoff function of the clustering game is defined in a way as to favour the evolution of 

agents supporting highly coherent objects. Intuitively, this is accomplished by rewarding the k 

players in proportion to the similarity that the k played objects have.

Hence, assuming (v1, ...,vk)  V∈ k to be the tuple of objects selected by k players, the payoff 

function can be simply defined as

Within this context, the notion of a cluster turns out to be equivalent to a classical equilibrium 

concept from (evolutionary) game theory, namely Evolutionary Stable Strategies, as the latter 

reflects both the internal and external cluster conditions of a cluster, i.e.,  internal coherency 

condition, which asks that the objects belonging to the cluster have high mutual similarities, 

and an external incoherency condition, which states that the overall cluster internal coherency 

decreases by adding to it any external object.

We also show that  there exists a correspondence between these equilibria and the local 

solutions of the following polynomial, linearly-constrained, optimization problem:

Additionally, we provide an algorithm for finding them, which derives straightforwardly from 

the Baum-Eagon inequality (L. E. Baum and J. A. Eagon, 1967).

Finally  in (A.  Erdem and A.  Torsello  2009)  we investigated the idea to  of  learning using 

contextual-dependent  similarities.  In  particular,  our  game-theoretic  approach  was used  to 

learn both the categories present in the data and the specific intra-category similarities that 

emerged from the context.

Typically in similarity-based approaches, the similarity between two shapes is a measure of 

how well the primitives forming the shapes and/or their spatial organizations agree, and the 

assessmet of whether a shape belongs to a particular class is performed by comparing in 

isolation the shape to one or more prototype and by applying the nearest neighbor rule.
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One problem with these approaches is that they assume the existence of a single universal 

measure of  similarity between shapes, often requiring metric properties as well,  while the 

human perception of similarity is not only non-metric,  but  also strongly dependent on the 

surrounding context. In particular, the observed variation within a shape-class is fundamental 

for determining the perception of the similarities of the shapes belonging to that class.

Recently, there has been a growing interest in trying to characterize the modes of variation of 

shape abstracted in terms of graphs,  which in turn induces a measure of the similarity of a 

shape to the whole class. However, it does not help in determining the perceptual similarity to 

any particular shape belonging to the class, a problem that is central in query by example 

approaches in content based image retrieval systems. 

In (A. Erdem and A.  Torsello 2009)  we propose a game theoretic approach to compute 

shape categories in an unsupervised way. There is a chicken and egg problem here: class 

knowledge is required to determine perceived similarities, while the similarities are needed to 

extract class knowledge. We solve this by iteratively clustering the shapes recomputing the 

similarities based on the extracted class information. Central to the approach is the ability of 

the framework to provide both the cluster information needed to extract the categories, and 

the relevance information needed to compute the category model and, thus, the similarities in 

a robust way. Further, the resulting contextual similarity is not symmetric, making the ability of 

the game-theoretic approach to deal with asymmetric affinities of fundamental importance. 

5. Equilibrium concepts for clustering

An initial investigation of classic game-theoretic concepts of equilibria showed that the vast 

majority of  the method proposed in the literature is a refinement of the Nash equilibrium, 

where additional constraints are added to offer stronger guarantees. 

Experiments on perceptual grouping and image segmentation clearly showed that the Nash 

equilibrium  is  already  overly-restrictive,  often  leading  to  over-segmentation  of  the  data. 

Motivated by this observation we decided to start our investigation on relaxations rather than 

refinements of the Nash equilibrium. To this end we developed the concept of maximal good 

which is defined as the set of strategies whose face is completely contained in the basin of 

attraction of an evolutionary stable strategy for all payoff-monotonic evolution dynamics.

In the case of symmetric payoffs this coincides with the face of the simplex that satisfy the 

additional ESS conditions

y  ∆ x Ax = y Ax  x Ay > y Ay,∀ ∈ ⇒

which is equivalent to finding the maximal face where the payoff matrix A is negative-definite 

on the space tangent to the simplex.
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With this intuition, we developed an algorithm to compute it in the case of symmetric payoffs, 

based on the triangulation of the payoff matrix. Let O be the set of available strategies and 

SO, the standard trace test (D. G. Luenberger, 1984) allows us to give a condition for the 

matrix A to be negative definite in the tangent space of the face ∆S of the simplex linked with 

strategies in S. In order to check the property we need to verify that  the principal minors from 

size 2 to size n+1 of the matrix

have alternating sign. This can be verified by iteratively triangulating the matrix BS
 using the 

following identities:

from which we obtain the recurrence

In this way, starting from an ESS  x we greedily extend the good in the order given by  Ax 

accepting only entries that give negative values of dtt, until no further expansion is possible. 

The resulting set of elements form a maximal face S such that  A is negative-definite in the 

tangent space of ∆S.

Further, it  can be shown that in the case of symmetric discrete 0-1 payoffs, i.e., the case 

described by the Motzkin-Straus theorem, the concept of cliques, dominant sets, and maximal 

good coincide. 
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